翻訳と辞書
Words near each other
・ Encyclopédie
・ Encyclopédie berbère
・ Encyclopédie française
・ Encyclopédie Méthodique
・ Encyclopédie nouvelle
・ Encyclopédistes
・ Encyklopedia Internautica
・ Encyklopedia Polski
・ Encyklopedia PWN
・ Encymachus
・ Encyocrates
・ Encyrtidae
・ Encyrtomphale
・ Encío
・ End
End (category theory)
・ End (film)
・ End (graph theory)
・ End (gridiron football)
・ End (topology)
・ End All Life Productions
・ End around
・ End Around (submarine tactic)
・ End artery
・ End Blood
・ End Child Poverty coalition
・ End Conscription Campaign
・ End correction
・ End Credits
・ End Day


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

End (category theory) : ウィキペディア英語版
End (category theory)

In category theory, an end of a functor S:\mathbf^\to \mathbf is a universal extranatural transformation from an object ''e'' of X to ''S''.
More explicitly, this is a pair (e,\omega), where ''e'' is an object of X and
:\omega:e\ddot\to S
is an extranatural transformation such that for every extranatural transformation
:\beta : x\ddot\to S
there exists a unique morphism
:h:x\to e
of X with
:\beta_a=\omega_a\circ h
for every object ''a'' of C.
By abuse of language the object ''e'' is often called the ''end'' of the functor ''S'' (forgetting \omega) and is written
:e=\int_c^^ S(c, c'),
where the first morphism is induced by S(c, c) \to S(c, c') and the second morphism is induced by S(c', c') \to S(c, c').
== Coend ==
The definition of the coend of a functor S:\mathbf^\to\mathbf is the dual of the definition of an end.
Thus, a coend of ''S'' consists of a pair (d,\zeta), where ''d'' is an object of X and
:\zeta:S\ddot\to d
is an extranatural transformation, such that for every extranatural transformation
:\gamma:S\ddot\to x
there exists a unique morphism
:g:d\to x
of X with
:\gamma_a=g\circ\zeta_a
for every object ''a'' of C.
The ''coend'' ''d'' of the functor ''S'' is written
:d=\int_^\mathbf S.
Characterization as colimit: Dually, if X is cocomplete, then the coend can be described as the coequalizer in the diagram
:\int^c S(c, c) \leftarrow \coprod_ S(c, c) \leftleftarrows \coprod_ S(c', c).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「End (category theory)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.